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INTRODUCTION

A notable early success of classical hydrodynamics was the dynamical theory of
tides (see e.g. Lamb 1932). A partial reason for this success was that, given the
time and space scales that apply in this problem, the difficult nonlinear terms in
the equations of motion could be neglected. The resulting linearized equations
are akin to those of acoustics, and solutions could be found with a variety of
realistic boundary conditions. The same equations adequately describe some other
large-scale atmospheric and oceanic motions, and it is therefore no surprise that
much can be learned with their aid about large-scale motions in lakes.

The equations of tidal theory were in fact used with great success in elucidating
the properties of seiches and internal seiches in small and moderate size lakes.
A se~che is a back-and-forth oscillation of lake level, much like the sloshing of
water ina bathtub. There is a large literature on seiches (for a recent review
see Wilson 1972) and its dynamics is well understood. An internal seiche is a similar
motion of the cold, bottom layer of a stratified lake, the interface between cold
and warm layers (the thermocline) playing the role of a free surface, although the
interface displacements are very much larger in an internal seiche than surface dis-
placements in an ordinary seiche. Internal seiches in small lakes have also been
understood for three quarters of a century (see e.g. Mortimer 1953).

During the last decade or so considerable further advances have been made in
the understanding of motions in lakes so large that the effects of the earth’s
rotation play an important role. These advances were also achieved with the aid
of linearized equations (containing Coriolis force terms), with some assist from the
conservation of potential vorticity. Platzman (1963) has treated in detail the effects
of Coriolis force on seiches in large homogeneous lakes. Here we discuss some
other interesting hydrodynamic phenomena involving density stratification, which
occur in large lakes and for which we have recently acquired a reasonable
degree of dynamical insight.

Originally this review started out with the tentative title "circulation and
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358 CSANADY

mixing in lakes," meaning respectively large-scale and small-scale motions in lakes
and their effects. It quickly became apparent that such a subject would be too
broad for the present series, would cover material already in standard texts, and
would at the same time require the reviewer to go into subjects insufficiently
understood at the present time, such as turbulence and mass transfer in strongly
stratified fluids, or even the dctails of turbulent mean flow distribution in a lake,
Some of these latter subjects are now under active investigation and another
review might profitably be devoted to them a few years hence.

POINCARI~ WAVES ON THE THERMOCLINE

The summer density distribution in sufficiently deep lakes at midlatitudes is
characterized by the existence of a thermocline or region of rapid temperature
change separating a relatively warm and light top layer from a relatively cold and
heavy bottom layer. The steepest temperature gradient usually occurs at a depth
of the order of 20 m. The density difference between top and bottom layers is of
the order of one part in one thousand.

The linearized equations of motion in a stratified fluid ~hould apply to at least
some simple motions in this medium. These equations are such that solutions are
profitably separated into horizontal and vertical distributions (Krauss 1966,
Lighthill 1969) provided that the water depth is constant. The vertical distributions
can then be expanded in eigenfunctions of the density structure, describing one
barotropic mode of motion, and a series of first, second, etc baroclinic modes. The
barotropic mode is indistinguishable from the motion that would occur in a
homogeneous fluid, while the first baroclinic mode can be modelled very simply
by assuming a frictionless interface at some suitable depth more or less co-
inciding with the steepest gradient of the actual temperature distribution, where
the density is assumed to jump abruptly. Because higher baroclinic modes make
relatively unimportant contributions to observed motions, such a "two-layer" lake
model should in fact be adequate for our further discussions. Once we decide to
suppress higher baroclinic modes through the use of a two-layer model, it is then
also possible to allow variations of water depth in the horizontal, as’indicated in a
schematic sketch in Figure 1. Such depth variations influence especially the
barotropic modes of motion in an important way.

............ - --. L_ ...... ........... ---

"/~ DENSIty"

Figure I ~chcmafic illustration o~ two-layer theoretical modc~ o~ ~ stratified lake.
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HYDRODYNAMICS OF LARGE LAKES 359

The main motive for~e of lake circulation is the stress of the wind on the
lake surface. There is also a stress exerted at the thermocline as well as at lake
bottom, through which the energy of all modes of motion would eventually be
dissipated, were it not for continued energy input from the wind. However, in
discussing what kinds of motions are set up by wind-sfress impulses, it is not
important to take into account interface and bottom friction. In the simplest
approach, the depth-integrated momentum of the top and bottom layers separately
is related to pressure gradients, Coriolis force, and wind stress, as is common in
oceanographic-circulation problems (Sverdrup 1957). The vertical equation 
motion is replaced by the hydrostatic approximation, so that two horizontal-
momentum equations and one continuity relationship remain for each layer
(these six equations may be found e.g. in Proudman 1953). As they stand, some
of the dynamical equations are coupled; but they may be reduced to two sets
of three, each set being independent of the other, describing barotropic and
baroclinic motions respectively (which are normal modes and may exist in-
dependently). Both sets of normal-mode equations are of the following identical
form :

20( Ou--u-- fV=ot -c

~V

OU OV
Ox + Oy

In describing the barotropic mode the interpretation of the variables is as
follows :

U, V are x and y (horizontal) components of the transport, that is, the velocity
integrated over the total depth h.

~ is the elevation of free surface above the equilibrium level.
Fx, Fr are the components of the wind stress divided by density,
c = (gh)1/z is the propagation velocity of long surface waves.

Applied to the baroclinic mode, these variables stand for :

U, V are horizontal components of velocity integrated over the bottom-layer
depth only, hb. Top-layer integrated volume transports are equal and opposite
to those in the bottom layer.

~ is the elevation of the interface (thermocline) above its equilibrium level.

Fx, Fr are related to wind stress by

h p

e is now the propagation velocity of long waves on the thermoeline, where
c = [geh, hdh] 1/2, with e = Ap/p the fractional-density defect on the top layer,
h~ = top-layer equilibrium depth.
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360 CSANADY

In both sets of equations f is Coriolis parameter, x, y are horizontal co-
ordinates, and t is time¯ Note that h and hb may be functions of location,
h(x,y), hb(X,y). For a simple derivation of these normal-mode equations with
arbitrary depth distribution see Csanady (1971).

Solutions of (1) satisfying appropriate boundary conditions may be expected
to model certain types of motion observable in large lakes. In a remarkable series
of contributions Mortimer (1963, 1968, 1971) has demonstrated that the type of
~olution known as the Poincar~ wave has many of the characteristics of
thermocline oscillations (and associated top- and bottom-layer velocities) observed
in Lakes Michigan and Ontario. Mathcmatically, Poincarb waves represent trans-
verse oscillations in an infinite channel of width b and depth h (both constant),
being described by

¯ nr~y
~ = As~n -~-cosa. t,

U = fb A cos mty cos a. t, (2)
nF b

a. b n~y .
V = ~ A cos ~-sin an t,

where

a2. = f2 +n2r~2c2/b2" (2a)

The centerline of the channel coincides with the x axis. These expressions
satisfy the boundary condition of zero normal transport at the channel walls,
y= _+b/2, ifn- 1,3,5 .....

The exact character of the motions described by (2) depends strongly on the
value of the quantity fb/c, which we may regard as either nondimensional channel
width or nondimensional rotational speed of the earth. When this quantity is
small, the effects of rotation are negligible and the frequency of oscillations becomes,
from (2a), tr, mrc/b, which is tranverse seiche frequency in a nonr0tating channel.
At the same time the amplitude of.transverse motions V becomes large compared
with that of longitudinal motion U. In the contrary case of large fb/c, the
frequency rr, approaches the inertial frequency f for the fundamental mode n -- 1
and some other lower modes, and the U amplitude approaches the V amplitude,
with the particle orbits becoming circular. This limit is close to the inertial oscillation
with period 2n/f which is a well-known simple mode of motion in a
rotating fluid far from any boundaries. However, in contrast to that simple
model, in a Poincar6 wave there are also significant surface or thermocline
motions.

Consider now large lakes at midlatitudes of a typical depth of 100 m and a
width of order 100 kin. The Great Lakes of North America or the Baltic Sea,
for example, fall into this category. The Coriolis parameter at midlatitudes has a
value close to 10-’~ sec-1. Therefore we have the following order-of-~nagnitude
estimates, assuming Ap/p = 1.5 x 10-3 :
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HYDRODYNAMICS OF LARGE LAKES 361

barotropic baroclinic
mode ~nodc

propagation velocity of long waves (cm sec- 1) 3000 50
nondimcnsional lake (channel) width (fb/c) 0.3 20

Transverse oscillations in the barotropic mode thus do not "feel" the rotation of
the earth to an appreciable extent. We conclude that the dynamical theory of
simple seichcs should be adequate for their description (which, as wc have already
pointed out, is well developed). On the other hand~ oscillations in the baroclinic
mode have frequencies close to the inertial (the fundamental oscillation and a few
harmonics) and their properties are rather more novel.

Poincarb waves observed on the thermocline of Lake Michigan (Mortimer 1963,
1968, 1971) have amplitudes of order-5 m. According to (2) the corresponding
transport amplitude should be fbA/nrc, or about 5 × 10’~ cmz sec-1, using n = 3.
With a top-layer depth of 20 m this gives an average top-layer velocity (transport
divided by top-layer depth ht) of 25 cm sec l, in good agreement with the
observed amplitude of oscillating currents. Bottom-layer currents should be opposite
in direction and smaller in the ratio of top- and bottom-layer depths, that is, of
order 5 cm sec-1. The velocity vector in either layer should rotate clockwise
through 360°, with little change in magnitude in a period slightly shorter than
the inertial period 2re~f, about 17 hr. Motions with exactly these characteristics
have in fact been repeatedly observed in Lake Michigan, suggesting that Poincar6
waves on the thermocline may exist there in a remarkably "pure" form.

In small lakes internal seiches occur on the thermocline, with characteristics
similar to stirface seiches, except that the propagation velocity of long waves is
much smaller in the baroclinic mode. The nondimensional width fb/c is small only
for baroclinic motions in lakes barely a few kilometers in size. In such smaller
lakes the internal seiche is usually dominated by the fundamental mode, having
a single node at the center (Mortimer, 1953). In larger lakes, by contrast, several 
the lowest modes are excited at very similar anaplitudes. Figure 2 is a particularly
clear illustration of this fact, as observed by Mortimer (1968): the lines are positions
of the 10°C isotherm (arbitrarily defined as "the" thermocline) on successive
crossings of a railroad ferry in Lake Michigan. The crossings take about 6 hr,
a substantial fraction of the wave period, so that the wave forms are not
particularly accurate, but the position of nodes is reasonably clear. The figure
suggests that the oscillations with 1, 3, and 5 nodes are present with similar
amplitudes.

Larger-amplitude Poincar6 waves occur mainly following storms, after which
they decay with a half-life of the order of several inertial periods. Their generation.
may be simply modelled using (1) and assuming that a wind stress is suddenly
imposed at time t = 0 and removed at t = T. The solution of the initial-value
problem for a straight infinite channel of constant depth is immediate and yields
the thermocline oscillation amplitudes (Csanady 1973a):

8Fh~,/h . {a, T~
A. - ~£ sin/--/. (3)
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362 CSANADY

120 127

Figure 2 Observed position of I0°C isotherm on successive crossings of Lake Michigan
(Mortimer 1968).

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

97
5.

7:
35

7-
38

6.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 o

n 
03

/2
6/

05
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.annualreviews.org/aronline


HYDRODYNAMICS OF LARGE LAKES 363

Most effective in exciting a given Poincar6-wave mode is a wind-stress episode
lasting for half a wave period, n/a,. We have already seen that in a large lake the
lowest modes have periods close to 17 hr, which should be excited best by wind-stress
impulses of about 8 hr duration. Fortuitously, this is in fact the typical lifetime of
a strong wind-stress episode at midlatitudes. Given the typical wind-stress value
of 3 dynes era-z in such stronger blows, (3) yields an amplitude of about 2 
for each excited mode, in good agreement with observations in Lake Michigan.

It is also interesting to consider the distribution of amplitudes A, for
increasing mode number n. Given a large enough nondimensional width fb/c, the
frequency or, remains close to f for the lowest few values of n, according to (2a).
However, the relationship being quadratic in n, the frequency soon begins to
increase and the second term on the right of (2a) rapidly comes to dominate the
relationshiI~. As or, increases, A, decreases on account of the multiplier O’n -2 in (3)
and initially also because sin(a, T/2) decreases, Thus A, is relatively large and
nearly constant for the first few modes n, but for these only, in a large lake. In a
small lake, by contrast, the amplitudes decrease with n as 1 : 9 : 25 :..., so that the
fundamental mode is of much more overwhelming importance. This is precisely
what the observational evidence shows, as we have already pointed out.

The agreement between observation and the simple theoretical model is actually
much too good and requires further explanation. In real lakes the depth is not
constant but reduces to zero at the shores. However, the depth only enters the
dynamical theory through the wave propagation velocity c. In the baroclinic mode
we have c = (gehthb/h)1/~, and this quantity varies relatively little with depth,
because hb/h remains close to unity except very near the shores. The situation is
different for motions in the barotropic mode, for which c = (~/h)1/2, and depth
variations are more important. The equilibrium depth of the top layer is constant
throughout (except where the water is shallower than ht) and this is what
mainly determines the response of a lake in the baroclinic mode.

One also wonders why an infinite channel should be a relatively reasonable
theoretical model of a lake, wl~ich after all has well-defined ends, while an
infinite sheet of water is not. Why should the sides be more important than
the ends, even if they are longer? A reasonable answer is provided by the
details of the solution for suddenly imposed wind: the thermocline does not in
fact start moving up or down until a pressure pulse reaches it from the shore.
Up to that instant the infinite-sheet model is good and inertial motion takes
place. Pressure pulses signal the presence of shores, propagate with velocity c, and
reach the center of the channel in time b/2c. With the order-of-magnitude estimates
we have used above this works out at 28 hr or about 1½ inertial periods. The
half-life of Poincar6 waves is only about twice this. Pressure pulses emitted by
the end walls also only reach a lake half-width in 1½ inertial periods: given that
Lakes Michigan, Ontario, and many others are. much longer than they are wide,
end effects should be negligible in them over most of their lengths. Specifically,
where the observations shown in Figure 2 were taken, end effects would not
arrive for some 4-5 inertial periods after the beginning of a storm and by this
time the pressure pulses could be expected to be greatly attenuated.
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364 CSANADY

Recent work on Lake Ontario in connection with the International Field Year
on the Great Lakes (IFYGL) tends to substantiate the above simple dynamical
picture. During summer stratification, thermocline oscillations of a period close
to the inertial (but somewhat less) are certainly prominent, and those have such 
character that they may legitimately be labelled Poincar~ waves. As may be
expected there are some complications: for example, spectacular internal-wave
fronts progressing across the lake have been observed. Presumably, linear models
of these may be made up from a combination of standing waves of the type described
by (2). Their generation may be related to asymmetrical wind-stress fields 
propagating squall lines, in place of a uniform, suddenly imposed wind. The
success of the simple theory in describing simple situations encourages belief that
its extensions to more complex cases will also prove illuminating, although of course
linear models have their limitations.

COASTAL JETS AND KELVIN WAVES

The solution of the initial-value problem, suddenly imposed wind on a constant-
depth, two-layer channel, also contains some aperiodic components. Specifically,
the component of the wind parallel to channel axis sets up downwind flow with
an amplitude proportional to the time elapsed. In channels wide enough for fb/c
to be of order unity or larger, the amplitude of downwind flow varies across
the channel in a characteristic way with maximum amplitudes occurring at the
shores. Such flow structures are known as "coastal jets" (Charney 1955). With
some caution, they may be utilized to model flow phenomena observable near
the shores of large lakes. For realistic lake widths b the parameter fb/c is only
large enough in the baroclinic mode to bring about a jetlike character of the
flow.

The aperiodic solution in question of (1) is, writing Fx = F, F~ = 0:

ft sinh(y/R)
c cosh(b/2R)’

cosh (y/R)
U = Ft cosh (b/2R)’ (4)

V FFc°sh(y/R) 11,=
where R = c/f is the "radius of deformation." In the barotropic mode this radius
is relatively large: using the "typical" figures in the table above we have R = 300 km
or about 6 times the typical channel half-width (representing a long lake). Conse-
quently, in (4)thehyperboliceosines are all close to unity, while sinh (y/R) "~ y/R < 1/6
and approximate solutions are

Ft y

cR"
U = Ft, (4a)
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HYDRODYNAMICS OF LARGE LAKES 365

In other words, the wind stress steadily accelerates the flow downwind and
cross flow is negligible, although a small crosswind tilt of the channel surface
develops. For a realistic wind-stress impulse Ft of 10s cm2 sec-1 (a stress of
3 dyne cm-2 acting for between 8 and 9 hr) ( varies from -5 cm at the
left-hand shore to +5 cm at the right-hand shore. Looking back at the
dynamical equations (1), we observe that Fx is in this case balanced bY the local
acceleration 8U/St in the first equation, while the Coriolis force ~fU in the
second equation is geostrophically balanced (by the crosswind surface slope).

Quite a different picture emerges for the baroclinic mode. With the typical
figures above we have R = 5 kin, or one tenth of the typical channel half-
width. The denominators cosh (b/2R) in (4) all become large, close to ½exp (b/2R).
Both ( (which now stands for thermocline elevation; see the interpretation rules
above) and U (bottom-layer downwind transport) become negligible over most 
the channel, except within boundary layers at the shores of scale width R. On the
other hand, the crosswind transport V is -F/.f over most of the channel and
reduces to zero only in the coastal boundary layers. The outer value of V is
precisely what is known as "Ekman transport." Approximate solutions are,
replacing the hyperbolic functions by exponentials, near the right-hand shore,
y = - b/2:

Ftexp( b/2+y~
~=V \-~)’

U = Ft exp -- , (4b)

Similar expressions hold on the leR-hand shore ~ = b/2, ~ being antisymmetric
and U and V symmetric with respect to channel axis. Returning again to the
dynamical equations (1), we note that very close to the shores the balance 
forces is the same as in the barotropic mode. However, far from the shores
the wind stress F~ is balanced by the Coriolis force f V instead of the local
acceleration, the terms in the second momentum equation being all negligible. These
last few remarks apply directly to a channel shallow enough to model by its
surNce response the baroclinic response of the actual two-layer channel. In the
application of the results to the two-layer case, however, the interpretation rules
must be considered, the most important modification being that the effective
forcing term is negative for positive F~. Thus the thermocline sinks on the right-
hand shore and rises on the left; the top-layer transport is downwind, bottom-
layer upwind. Well away from the shores, the top layer moves to the right of the
wind, the bottom layer to the leR.

For the wind-stress impulse Ft = 105 cm~ sec- ~ we have considered above, and
the typical parameters we have been using, the amplitude of the thermocline
elevation-depression at the shore, (h~/h) Ft/c, is 16 m, or almost the whole
thermocline depth. The linearized theory, which assumes small surNce and interNce
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366 CSANADY

displacements, clearly no longer applies quantitatively to this case, but it
suggests that a strong wind may well bring the thermocline up to the surface
on the left-hand shore and depress it considerably on the right.

We should also note here that (4) constitutes a particular solution of (1) 
a forcing term (F~) present. By contrast, the Poincarb waves discussed in the
previous section were solutions of the homogeneous equations (F~, Fy both zero).
A suddenly imposed wind, as we have seen, produces both the type of response
described by (4) and some Poincar~ waves. We may legitimately regard the former
component as per the directly °°forced" part of the response, In this context it is
important to remember that a given forcing excites both barotropic and baroclinic
motions in a two-layer fluid. This has little consequence for normal modes of
free oscillations such as Poincarb waves, which once excited proceed independently
of other modes of motion (in a linear model). The corresponding motions in the
barotropic mode are transverse surface seiches of well-known characteristics.
The typical seiche periods are rather less than the inertial period and there is
little point in calculating the combined motions resulting from a number of
surface seiches and Poincar~ waves. However, the barotropic and baroclinic
forced motions both increase in proportion to elapsed time and remain
coherent indefinitely in an infinite channel. The properties of this combined forced
response, after substituting the interpretation rules and using the approximations
of (4a) and (4b) are (near the right-hand shore, the left-hand shore transports
being symmetric):

Top-layer velocity Bottom-layer velocity

Ft hb Ft
x-component, u ~-I1 +~exp( b/2~y.)]~[1-exp (~)?,

hbF F. f
y-component, ~fhL,-exp~ b/2~Y)]hbFF. 77| | / b/2~+y)]

where R = c/f refers to the radius of deformation in the baroclinic mode. The
velocities here are layer averages: transport divided by layer depth. Close to
the shore the top-layer downwind velocity is Ft/h,, which is simply the stress
impulse divided by the top-layer depth. The bottom-layer velocity is zero, corre-
sponding to the fact that the thermoeline is supposed frictionless and no momentum
can be transferred to the bottom layer. Farther from shore (at distances of
several R, that is, outside the baroclinic coastal boundary layer), by contrast, the
distribution of alongwind velocity is uniform, u = Ft/h, or the wind-stress impulse
divided by total depth. In other words, the bottom layer has somehow acquired
x-wise momentum. The second line of the above table also shows how: the time-
integrated Coriolis force fvt associated with cross flow in the bottom layer is
exactly equal to the x-wise momentum gain. As the thermocline dips down on
the right-hand shore, the bottom layer is forced across the channel. The Coriolis
force acts on this crosswind flow and produces windward motion in the bottom
layer, transferring windward momentum vertically down exactly as an interface
stress would. The top layer loses an equal amount of momentum, on account
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of its crosswind displacement to the right, the net crosswind transport being zero
to the accuracy of the approximations in (4a) and (4b).

The net outcome of this calculation is that near shore the wind-imparted
momentum is concentrated in the top layer, but only within a distance of order R
from the shores. The maximum velocity of the top-layer coastal jet is Ft/h,. Using
Ft = 105 cm2 sec- 1 and h, = 20 m this amplitude is 50 cm sec 1. Studies of the
coastal jet in Lake Ontario (Csanady 1972a, Csanady & Scott 1974) have shown
the existence of flow structures in the coastal zone that have characteristics very
much as described by the above theoretical model. The velocity amplitudes are
clearly as calculated: the wind-stress impulse divided by top-layer depth; the
width of the coastal jet is of the order of the internal radius of deformation, 5 km;
and significant motion is confined to the top, warm layer. Some examples of such
baroclinic coastal jets are shown in Figure 3. There is an accompanying thermo-
cline elevation or depression (the former on the left of the wind, the latter on the
right), whose amplitude is often large enough to bring the thermocline to the
surface or deprcss it to a depth of the order of twice the equilibrium depth or
more, all in accordance with theory. These features of the thermocline behavior
were also noted by Mortimer (1963, 1968, see also Figure 2 above) in Lake
Michigan. Indeed it is common knowledge around the Great Lakes that the
shore to the rif~ht of the prevailing southwesterlies in the summer (the eastern
shores of north-south oriented lakes such as Michigan and Huron and the
southern shore of the east-west Lake Ontario) is the "warm" shore, the opposite
the "cold" shore where frequent upwellings occur.

We conclude ttrat a second simple theoretical model, the coasfal jet, again
appropriate for an infinite channel~ is quite a successful idealization of some
observable phenomena in large lakes. In fact in summer in such large lakes one
can observationally distinguish (Csanady 1972a, Blanton 1974) a baroclinic coastal
boundary layer some 5-10 km wide. In this zone the current regime is dominated
by coastal jets, accompanied by thermocline upwellings or downwellings, in contrast
to a central region, where the current regime is dominated by Poincar6 waves.
Nevertheless, the simple picture we have developed above is certain to have its
limitations: barotropic motions especially have a relatively short time scale (the
period of longitudinal seiches) and equations (4a) can only be reasonable approxima-
tions for a fraction of the seiche period. In other words, end effects must soon
make themselves felt, in that longshore pressure gradients appear. However, surface-
elevation gradients which drive barotropic motions do not significantly interfere
with water movements in the cOaStal zone, where the water is relatively shallow,
as we shall see in the next section. On the other hand, longshore gradients of
thermocline elevation can affect the behavior of coastal jets in a remarkable way,
even if the time scale of their development is quite slow.

To model such effects we avail ourselves of a third simple solution of (1),
satisfying infinite-channel boundary conditions, known as the Kelvin wave:

?~ = A exp (-- y/R) sin k(x-- ct) (5)

where A is an arbitrary amplitude, R = c/f, and k is an arbitrary longshore wave
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number. The wave propagates along the channel axis; particle orbits are straight
lines parallel to the walls; and the amplitude distribution is such that the wave
is "trapped" at the right-hand shore, its amplitude decreasing exponentially with
distance from shore, with scale width R. The properties of Kelvin waves are
discussed in standard texts.

An infinite channel may be converted into a model of a closed basin by placing
end walls at x = + a. A uniform wind stress, suddenl3/imposed over such a basin,
models in an elementary way the generation of coastal jets by storms. The
solution of this initial-value problem in full for a rectangular basin is likely to be
quite complex, on account of the many different free modes that exist (Rao
1966). However, if we direct our attention to the coastal boundary layers, a partial
solution may be found that satisfies initial conditions near the walls only (Csanady
& Scott 1974). This solution effectively filters out the Poincar6 waves (which are
mainly important in the central zone) and consists of a static or time-independent
solution of the nonhomogeneous equations and of a series of Kelvin waves. At
distances from the end walls much greater than the baroclinic radius o.f deformation
R the thermocline elevation is given by

~’ = Ax cosh (y/R)-

(-D "+~ ( . V
1)rr(x-ct)]¯4aArc2 n=l i e-" s’nL A+

where the amplitude Nctor A is given by

F
A-

c~ cosh (b/2R)"

The infinite sum in (6) represents two series of Kelvin waves: one at the right-
hand shore, one at’the left-hand shore. Each series adds up to a triangular wave,
one leg of which is a straight line exactly cancelling the static thermocline elevation
distribution at ~ = 0. At the shores, y = ~ b/2, this static distribution is as in a non-
rotating or small basin, where the slope balances the wind stress. In a large
basin, this slope disappears within a distance of order R from the side walls and
the thermocline remains flat, except of course for Poincar~-wave activity that we
have ignored.

Within the principal half-wave of the trigonometric series in (6) these series
sum to ~& ~ ct)/Sa, yielding ~he distribution

A
~ (x + ct) r/~ =- Act sinh (y/R), (6a)

which is exactly the "coastal jet" solution of (4b). However, as time passes, the
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I j..static setdown t 0

x=-a x=O x=o

t>O

Figure 4 Combination of static setdown and Kelvin waves excited by suddenly applied

wind stress.

half-waves progress alongshore in a cyclonic sense, and, at points close to the ends,
the thermocline begins to drop back from its position as given by (6a). Some
features of the solution in (6) are illustrated in Figure 4; the reader should have
no difficulty in extrapolating.

When the wind stress is suddenly removed, the static part of the solution in (6)
disappears. The solution of the initial-value problem "in reverse" shows that this is
replaced by another triangular wave, one leg of which exactly coincides with the
static solution (the initial triangular wave was exactly 180° out of phase). The
two waves, those produced on the imposition and on removal of the wind stress,
travel together at the same speed, so that they add up to a trapezoidal wave
as shown in Figure 5.

The velocity distribution corresponding to these wave patterns is at once obtained
if we observe that the motion is to a higla degree of approximation geostrophic.
Thus baroelinic coastal jets accompany the peaks and troughs of Kelvin waves,
with an amplitude of u = c~/ht = Ft/ht, which is exactly the value given by the
coastal-jet model. However, the maximum value of the time for which this expression
is valid is now seen to be 2a/c, or the time in which the Kelvin wave travels
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,L~-Kelvin waves slarted J ~-"

started at t = 0
X= -a x=a

Fioure 5 Combination of triangular Kelvin waves after removal of wind stress. The
resultant pattern propagates without change of shape along the shore.

from the upwind end to the downwind end. Also, the full amplitude coastal jet is
confined to the region ahead of the wave arriving from the upwind end (on the
right-hand shore : on the left-hand shore the wave arrives from the downwind end).
As the wave passes, the sign of the thermocline elevation changes, an upwelling
becomes a downwelling and vice versa, and the coastal jet reverses direction,
beginning to flow upwind.

Something very similar to the above scenario has in fact been observed in
Lake Ontario during the International Field Year on the Great Lakes (Csanady 
Scott 1974). A storm episode observed on and following 23 July, 1972 is illustrated
in Figures 6-8. A current reversal is seen to propagate around the lake counter-
clockwise, at an approximate speed of propagation of 40 km/day. This speed is
very .much like the one calculated for the propagation velocity of waves on the
thermocline, using figures for thermocline depth and top-layer density defect
derived from observation. The wind impulse lasted for some 5 days, and in the
last three days of this period a remarkable parting of the waters was evident
between the Olcott and Rochester observation stations, the Olcott coastal jet
flowing upwind. The amplitude of the observed coastal jets and the accompanying
thermocline displacements were all quantitatively in accord with our simple
theory. Earlier eviddnce for the progress of internal Kelvin waves around Lake
Michigan was discussed by Mortimer (1963). An analysis of fixed-point current-
meter records in Lake Ontario by Blanton (1974) has shown periodicities of the
order 14 days, which would be the period of a Kelvin wave travelling a full
cycle, back and forth along the lake.

A complete solution of the initial-value problem may be written down for a
circular basin (Csanady 1968, 1972b, Birchfield 1969). This confirms the picture
gained from the above partial solution: the static solution and the Kelvin waves
may be combined into a coastal-jet pattern increasing in amplitude linearly in
time but propagating counterclockwise around the basin. The full solutions contain
in addition a number of waves of shorter period, among them surface seiches
and Poincar6 waves on the thermocline, with properties we have already discussed
or referred to.
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Fioures 6-8 Progress of thermocline upwelling and coastal jet reversal around Lake

Ontario, during IFYGL, duriug a storm in late July.

Figure 6a Cross sections of temperature, July 23, 1972.
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Figure 6b Cross sections of longshore component of velocity, July 23, 1972. Negative
velocities are shown by broken line.
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F!yure 7a Cross sectiolas of temperature, July 27, 1972.
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Figure 7b Cross sections of longshore component of velocity, July 27, 1972.
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Figure 8a Cross sections of temperature, July 3l, 1972.
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Figure 8b Cross sections of longshore component of velocity, July 31, 1972,
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TOPOGRAPHIC GYRES

The large extant literature of surface seiches has for a long time obscured the
lack of systematic studies of wind-driven barotropic motions in closed basins.
Guided by theoretical results obtained for somewhat unrealistic constant-depth
models, one usually took it for granted that wind stress produced a static
"set-up" and excited some seiches, and that a combination of these would describe
observable barotropic motions. Numerical integrations of the equations of motion
carried out in recent years (see e.g. Rao & Murty 1970, Paskausky 1971, Simons
1972, Bennett 1973) have, however, turned up some closed streamline patterns of
barotropic flow in closed basins that were quite different from seiches: they were
evidently related to the depth distribution in the basin, and may be called
topographic gyres. In a first approximation the dynamics of these may,also be
explained by (1).

We have already seen that barotropic motions should "feel" depth variations
more than baroclinic ones, while the reverse should be the case with the effects
of the earth’s rotation. Thus in a first approximation we may ignore the Coriolis
force in evaluating wind effects on homogeneous lakes, but we must take into
account depth variations. In other words, (1) with the Coriolis force deleted
describes barotropic flow to a reasonable approximation, but in any realistic
model we have to treat cz = gh as a variable. If Fx, Fy in these equations are
components of wind stress (that is, if we ignore bottom friction), (l) without 
Coriolis force may be satisfied by a solution of the following form (Csanady
1973b):

U = ~ t V = - t, (7).Oy
where ¢(x,y) is a streamfunction for the depth-integrated acceleration. This is
constant in time, so that the transport components U, V increase in proportion
to elapsed time, much as the longshore transport does in a coastal jet. Substituting
into the equations of motion, one finds the differential equation for ff :

where

S= hdy
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is the total cross-sectional area and b = Y2-Yl is the width. The second term in
the bracket in (9) is the local depth divided by the average depth in that particular
cross section. Where the depth is less than the average, the current flows with
the wind; where the depth is greater, against the wind. Physically, what happens
is that a surface slope becomes established opposing the wind stress, which just
neutralizes the stress at the locus of the average depth. The "effective" gravity
(surface slope times gravitational acceleration) acts on each particle of water in 
given column, the total force being greater than the wind stress where the water is
deeper than average, and smaller where the depth is less.

Equations (7) and (8) describe a particular solution of (1) (with f = 0) 
basin of quite arbitrary topography. The full solution for suddenly imposed wind
also contains a number of seiches, whose typical periods are T~ = 21/c,, where l is
lake length or width, for longitudinal and surface seiches respectively, and c, is a
typical value of (gh)~/2. Even for quite large lakes T~ is no more than of order
10 hr. Hence the steady buildup of transport given by (7) will be interfered with
rather soon by periodic movements. Seiche motions are produced essentially by
surface-level changes and are most noticeable in deep water. In shallow water
the gravity forces arising from surface-level variations (whose magnitude is
governed by the average depth of the basin) continue to be overwhelmed by the
local effects of wind stress. The net effect is that strong barotropic coastal currents
develop and persist close to shore, pointing downwind.

The steady increase in velocity predicted by (7) cannot go on forever even in the
shore zone. Bottom friction limits the maximum current speed that can be main-
tained by a given wind stress, even where pressure gradients are quite negligible. A
mathematically convenient, if physically quite unrealistic model of bottom friction
is a linear relationship to depth-integrated transport :

Fb~ = -- kU, F~ = - kV. (10)

Adding these terms to (1), the same solution O(x,y) found above (8) remains
valid (if f = 0), but U, V are now:

U = ~(1-e-k’),

1 ~0 ,, e_~a) (11)

These reduce to (7) for t --, 0. Asymptotically, for t ~ oo, O/k is seen to become
a stream function for depth-integrated transport (rather than for acceleration).
This is what Figure 9 was originally meant to show.

With a more realistic (quadratic) bottom-stress law an asymptotic, steady-state
streamline pattern is obtained that differs in detail from a solution of (8) but
has the same qualitative characteristics. Topographic gyres, in particular, remain
in evidence.

Some insight into the generation of topographic gyres is also provided by the
vorticity equation. From (1) one can show that the vorticity of the depth-averaged
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flOW is produced by the curl of wind stress divided by depth :

~?~- = curl
(12)

where ~ -c~v/c~x-c~u/c~y is vorticity; F is a vector of components Fx, Fr; and
u = U/h, v = v/h are depth-averaged velocities. Take again a long and narrow lake
and suppose that wind blows along its long axis. To the right of the wind the
curl of F/h is positfve and cyclonic ~orticity is produced, whereas to the leR anti-
cyclonic vorticity is produced. Bottom friction tends to cancel the vorticity input
by the wind, but only after the topographic gyres have become established.

Equation (12) is a linearized form of the potential vorticity theorem which may
be derived from the full (nonlinear)equations of motion on the supposition that
u, v do not vary with depth. This is an idealization different from what (1) implies
and its consequences are worth pursuing further. For our ~urposes the potential
vorticity theorem may be stated as

d (f+~ = ~curl F. (13)

Here d/dt is total derivative, so that depth variations following a fluid column
become important. Where the fluid crosses depth contours, vorticity may be
generated.

The potential vorticity theorem provides an opportunity to assess qualitatively
the so far neglected effects of the Coriolis force on the topographic gyres. Before
significant motions devdop, (13) is equivalent to (12), with the depth of 
fluid column remaining unchanged, and the previous results apply. As the fluid
begins to cross depth contours, however, changes in h must be balanced by
changes in vorticity ~. It is simplest to think of an initial vorticity distribution

qo(X, y) established impulsively by wind stress, with no wind acting afterwards. The
potential vorticity (f+qoffh is then conserved for each water column. In a large
lake it is also realistic to assume that f > I ol,that is, that the initial potential
vorticity is everywhere positive.

Consider now the two main topographic gyres set up by wind in a long and
narrow lake: a cyclonic one to the right of the wind, an anticyclonic one to the
left. At the downwind end of both gyres the fluid is moving from shallow to deep
parts of the basin, that is, the depth h of each column is increasing. This requires
an increase in f+q, that is, the generation of positive (cyclonic) vorticity. By the
same token, anticyclonic vorticity is generated at the upwind end of the lake. For
the right-hand (cyclonic) gyre this means that its downwind end is reinforced,
while its upwind end is weakened and partially cancelled. The anticyclonic gyre is
weakened at the downwind end, strengthened at the upwind end. The net result
is a counterclockwise rotation of the gyre pattern. Similar phenomena have been
discussed (e.g. by Ball 1965) in a treatment of "second-class" motions of a liquid.
The period of rotation of the pattern is a few times the inertial period (say 
times, for a basin of the characteristic~ of Lake Ontario). A numerically calculated
episode of this kind is shown in Figure 10, due to T. J. Simons.
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Lake Ontario
Computed Water Transports

(b) August 12, 1972; stratified

/~~--~-::::: <--<4 ....... -’-,-, ;>-t-" -

(c) August 14, 1972; stratified

Figure 10 Numerically calculated rotation of depth-integrated transport in Lake Ontario,
following a westerly storm.

www.annualreviews.org/aronline
Annual Reviews

A
nn

u.
 R

ev
. F

lu
id

. M
ec

h.
 1

97
5.

7:
35

7-
38

6.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 P

U
R

D
U

E
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

Y
 o

n 
03

/2
6/

05
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://www.annualreviews.org/aronline


384 CSANADV

We may now ask to what extent these theoretical conclusions are verifiable in
real lakes. Figure 11 shows the observed distribution of transport in Lake
Ontario during the International Field Year on the Great Lakes (IFYGL), at the
Oshawa coastal chain, on two days following more or less well-defined wind
stress impulses. The locus of the average depth in this section is approximately 16 km
from the Oshawa shore. Clearly, the data are in good accord with the prediction
that the transport would tend to zero at that depth. Also, the order of magnitude
of the observed transport agrees with the wind-stress impulse, as follows directly
from (1), if the influence of longshore pressure gradients is indeed negligible in the
shallow coastal zone. With present instrumentation it does not seem to be possible
to verify the existence of a slow "return" flow over the deepest part of the basin,
following similar wind-stress impulses. The rotation of the flow pattern should be
verifiable, but this phenomenon has not so far been reported to be discernible in

2

8 AUG.

0 I I I I

~’q.~-1

~

km from NORTH SHORE

¯ \\ ~o aUG. / /

\\ ~

~// i//-5 \
\ 
\ I-~ I
\ / \ /

-6 x~/ \ /AU
\ 

Figure 11 Observed transport distribution in coastal zone at Oshawa, during IFYGL,
following two opposing storms.
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observations. Quite possibly, frictional effects are too strong to allow the develop-
ment of flow-pattern rotation.

In conclusion, it perhaps bears emphasizing that, while the above linear hydro-
dynamic theory has been gratifyingly successful in several respects, it is no more
than a first approximation. There are many interesting and important phenomena
in large lakes that are more complex or wherein the effects of turbulence are

more strongly felt. There will be no lack of interesting research projects relating
to large lakes for some time.
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